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Classical Diffusion in Strong Random Media 
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We study classical diffusion of particles in random media. Although many of our 
results are general, we focus on the case of an ion in a three-dimensional 
medium with random, quenched charge centers obeying bulk charge neutrality. 
Within a functional-integral framework, we calculate the effective diffusion 
coefficients by first-order and second-order self-consistent perturbation theory 
(with a Gaussian reference in both cases). We also carry out a one-loop order 
momentum space renormalization group calculation. The self-consistent 
methods are complicated numerically and fail beyond intermediate disorder 
strengths. In contrast, the renormalization group calculation gives an analytical 
result that appears valid even to high disorder strengths. The methodology, 
generally applicable to a quantitative calculation of effective diffusion coef- 
ficients in disordered media, resolves deficiencies in self-consistent perturbation 
theory approaches to this class of problems. 

KEY WORDS:  Diffusion; random media; functional integral; perturbation 
theory; renormalization group. 

1. INTRODUCTION 

This  paper  describes quan t i t a t ive  ca lcu la t ions  of  the effective classical 
diffusion coefficient of  part icles in r a n d o m  media.  Some of  ou r  results 
are general ,  bu t  we focus in par t i cu la r  on  the th ree -d imens iona l  classical 
diffusion of an  ion  in a m e d i u m  with charged impuri t ies .  The  presence of 
the impur i t ies  impedes  the m o t i o n  of the ionic pene t ran t ,  thereby reduc ing  
the effective diffusion coefficient. The  degree of r educ t ion  of the diffusion 
coefficient is, of  course,  very i m p o r t a n t  in m a n y  app l ica t ions  of condensed  
ma t t e r  systems, f rom the dif fusion- l imited react ions  that  occur  in hetero-  
geneous  catalysts,  "ion-exchangers,  an d  sorben t s  to the m a n y  ionic pro-  
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cesses occurring in disordered biological media to the diffusion of gate 
material across oxide layers in small-scale electronic devices. 

Early formulations by Martin et al. I1~ and De Dominicis and Peliti t2~ 
provide a field-theoretic framework in which to consider problems of diffu- 
sion in disordered media. Renormalization group studies of diffusion in 
random media have shown that for high enough dimensionality or for 
force-force correlations of short enough range, there is a weak disorder 
fixed point that is diffusive. Many of the calculations leading to this conclu- 
sion are discussed in the recent review by Bouchaud and Georges. 131 

Since the fixed point is diffusive, one might suspect the diffusion 
problem should be well-modeled by a Gaussian reference system. In fact, 
this problem has recently been treated by constructing a self-consistent 
Gaussian reference system for a path integral formulation of the diffusion 
problem, t41 As noted in ref. 4, the reliability of this approach is restricted 
to weak and moderate disorder strengths. At strong disorder, it predicts a 
diffusive to subdiffusive transition, in disagreement with an exact bound 
known for this problem (vide intra). 

It seems, therefore, that self-consistent approaches to identifying a 
Gaussian reference system lead to renormalizations of the diffusion coef- 
ficient that are far too dramatic at high disorder strengths. Essentially, 
these Gaussian reference systems overemphasize short-length-scale features 
and do not capture the large-length-scale diffusive behavior correctly. 
Graphically, one expects that the diffusing particle tends to remain trapped 
in locally deep potential wells, with occasional transitions between trapping 
sites. The hops between wells leads to overall diffusive behavior, with a 
diffusion coefficient reduced from the free-space value. If this picture is 
correct, a renormalization group analysis should capture it. 

Mathematically, the problem we treat is the calculation of a diffusion 
coefficient in a material with a static potential that obeys Gaussian 
statistics. Physically, one example of a Gaussian potential is that due to the 
large-length-scale fluctuations in charge density that occur in a medium 
with ionic disorder. So, for example, we might be considering the diffusion 
of an ion in sea of fixed, disordered charges. That the Coulomb potential is 
singular at overlap implies that the potential between the diffusing ion and 
the disordered ions is not Gaussian on very short length scales. However, 
on long enough length scales, the potential is likely Gaussian, since the con- 
tribution at any point is due to very many ions, and the central limit 
theorem likely applies. Thus, we can consider imposing a wavevector cutoff 
while in the process of our calculation, constraining ourselves to the region 
where the physical potential truly is Gaussian. It will turn out that in the 
case where the motion is diffusive, we can take the cutoff to infinity at the 
end of the calculation. Thus, we will proceed as though there were no cutoff. 
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In Section 2, we describe our model of the random medium in which 
the particle diffuses. We illustrate our general results by reference to this 
specific form of disorder. In Section 3 we review the field-theoretic formula- 
tion of the classical diffusion problem and discuss simple perturbation 
theory for the effective diffusion coefficient. We attempt to take into 
account some of the higher-order terms by constructing self-consistent 
Gaussian reference systems in Section 4. This approach is not wholly 
satisfactory, however, and we attempt to incorporate the overall scaling 
properties of the problem with a renormalization group calculation in 
Section 5. We discuss the significance and limitations of the calculations in 
Section 6. 

2. R A N D O M  M E D I U M  M O D E L  

We assume the potential felt by the diffusing ion is caused by a static 
distribution of charged impurities, 

V ( x ) = f  eq dy ~ p(y) (1) 

The correlation function of the number density of charge centers is assumed 
to have a finite correlation length and obey bulk charge neutrality. A fairly 
general form for the susceptibility is therefore 

pK2e-~: Ixl 

Xp~(x) = pf(x)  4rt Ixl (2) 

In k space, this form is 

k 2 

)(pp(k) = p k2 + n2 (3) 

The coefficient of the e x p ( - n r ) / r  term in Eq. (2) is chosen so as to make 
,~pp(k) vanish in the limit k--, 0, thereby satisfying charge neutrality in a 
bulk sample. Here, the correlation length is given by l/n, and the charge 
centers are considered to have an average number density of p. Such a form 
would result from a simple Debye-Hfickel theory for the charged 
impurities, but we do not make this correspondence and assume no par- 
ticular relation between x and p. The potential field resulting from the ran- 
dom density field is likely Gaussian in the limit of a large sample due to 
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the long-range nature of the Coulomb potential arid the finite correlation 
length of Eq. (2). The correlation function of the potential field is given by 

(4rceq) 2 p 
f~vv(k ) = k2(k 2 + x2) (4) 

where +_ e is the charge of the impurities and q is the charge of the diffusing 
ion. 

3. FIELD-THEORETIC REPRESENTATION OF THE 
DIFFUSION EQUATION 

The Green's function Gv(x, t) for diffusion in a particular instance 
of a quenched random medium is given by the solution of the standard 
diffusion equation. With Do as the free-space diffusion coefficient and 
flo = l/kB T, the diffusion equation is 

OGv(x,t) DoV2Gv(x,t)+/~oDo V - [ G v ( x , t ) v v ( x ) ]  (5) 
Ot 

where V(x) is an instance of the quenched random potential in which the 
diffusion occurs. The Laplace transform of the Green's function (~v(X, s) 
satisfies 

sGv(x, s) = DoV2(~ v(x, s) + floDoV- [(~ v(X, s) VV(x)] + 6(x) (6) 

This Green's function can formally be represented by a functional integral 
over two conjugate fields, t3) 

~v(X,S)= - i  f ~[@] ~ [ q ]  0~(x)qg~(O)eL"[*'*2/tl" ~ [ ~ ]  ~[~a] e Lv[~'*] 
/ -  

(7) 

where the action is given by 

Lv[(P, q3=i  ; dx t~,(x){(s-DoV~)tp=(x)-floDoV.[cp=(x) VV(x)]} (8) 

Summation over repeated replica indices is implied in Eq. (8) (~t = 1 ..... N). 
When the potential is a Gaussian field, as it is assumed to be, the quenched 
average over the potential results in the effective action 
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L[6, ~] = i fk ~ ' ( - k )  q3~(k)[s + Do k2] 

+ (fl~176 fk (2n)a 6(kl + k2 + k3 + k4)k2" (kl +k2) 
2 ,k2k3~ 

x k4 - (kl + k2) ~ vv(lkl + k2 [ ) ~b~(kl) ~ (k2)  (ha(k3) ~a(k4) (9) 

where the notation jk stands for the d-dimensional integral j dk/(2n) d. The 
function ;~ vv(k) is the potential-potential correlation function. The average 
over quenched disorder requires the limit N ~ 0 be taken in the expression 
for the Green's function. The disorder-averaged Green's function is thus 
given by 

i Nlimo f ~[(~] ~ [ , . ]  ~,(k) c~,(_k) eLE6.,] ~(k, s)= - ~  

/ f  @[~] @[@] e Lt6'*~ (10) 

where I2 denotes the effectively infinite volume of the system. Alternatively, 
in the thermodynamic limit, Eq. (10) can be written as 

(2n)e ~(k + k') (~(k, s) = - i lim <~,(k) ~b,(k')> ( l l )  
N ~ 0  

where the angle brackets denote the functional average with weight 
exp(L[~, (~]). 

The action (9) in the disorder-averaged functional integral representa- 
tion of the Green's function does not have a harmonic form, and the 
Green's function thus cannot be calculated exactly. We are interested in 
the effective diffusion coefficient, defined in relation to the mean square 
displacement averaged over the disorder by 

D = lim [ dx Ixl 2 a(x, t)/2 dt = lim Cr-'(k, O)/k 2 (12) 
t ~ o v  J k ~ O  

As detailed in Appendix A, iteration on Eq. (6) using the V = 0  free 
propagator (~,ee(k, s ) =  1/(s + Do k2) generates a perturbation series for the 
effective diffusion coefficient: 

D/Do= 1 -~2Xvv(O)/d+~gXvv(O)2/2d2+ O(flo 6) (13) 

in d dimensions. The site potential fluctuations are given in the case of 
model (4) by 

~2Xvv(O)= Y (14) 
4~xD 2 
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where the strength of disorder y is given by 

7 = (4nfloDoeq) 2 P (15) 

Direct perturbation theory on the action (9), discussed in Appendix B, 
reproduces Eq. (13). To first order, both N = 1 and N ---, 0 lead to the same; 
correct result. The N ~ 0 limit must be taken to obtain the correct result 
to second order, however. 

4. SELF-CONSISTENT GAUSSIAN REFERENCE SYSTEMS 

To make progress on the anharmonic action (9), we require some form 
of approximation. In this section, we use a self-consistent perturbation 
theory for the correlation function. That is, we define Gaussian reference 
systems by requiring either the first-order or the first- plus second-order 
correction to the correlation function to vanish for a harmonic reference 
system: 

( ~ = ( - k )  ~bp(k)(L- Lo))oc = 0 (16) 

o r  

(~,(-k)(o~(k)(L-Lo))o,.+�89 (17) 

where L is the action of Eq. (9). The subscript zero on the brackets 
indicates an average over the reference system: 

<>~ f ~[~]~Eg](')e~Eb'*]/f ~[~]~[~p](')et'~ (18) 

The subscript c on the brackets in Eqs. (16) and (17) denotes a connected 
average. The Gaussian reference action, over which the connected averages 
are taken, is given by 

Lo[ ~, ~3 = i Ik ~ ( - k )  q3a(k) ( ~ ( k ,  s) (19) 

Equation (16) or (17) determines the Green's function (~o,p(k, s) of the 
Gaussian reference system. If the partition function generated by the action 
(9) were real and convergent, Eq. (16) would be the standard variational 
bound to find the optimal harmonic reference system that mimics the 
properties of Eq. (9). ~5) Note that the effective Green's function (~o,~(k, s) 
must be real and depends only on Ikl due to the isotropic symmetry of 
;~vv(k). 
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Perturbation theory to infinite order in//2 using the diagonal, replica- 
symmetric free propagator predicts that (~b~(k) ~ a ( -  k))rrcc vanishes in the 
N ~ 0  limit if ~:/:fl. We thus assume a diagonal, replica-symmetric 
reference system. In this case the resulting self-consistent equation for the 
real, radially-symmetric, effective propagator for the first-order treatment is 

where 

Gol(k, s) = (s + Do k2) + (floDo) 2 fk2 G~ S) 02(k, k2) (20) 

~(k, k2) = Xvv( Ik - kal)k- (k - k2)k2" (k - k2) (21) 

The self-consistent equation arising from the second-order treatment is 

2G o '(k, s) = 3(s + Do k2) - Go(k, s)(s + Dok2) 2 

+ 4(fl~176 fk2 G~ s) ~(k, k2) 

- 2(floDo) 2 Go(k, s)(s + Do k2) fk2 Go(k2, s) a(k, k2) 

- (floDo)'- fk2 G~ s)(s + Dok~) ~(k, k2) 

- (floDo)4 Go(k, s) [ fk2 do(k2, s) ot(k, k2)] 2 

--(fl~176 fk2 G2(k2' s)d(k, kz) fk~ G~ s)d(k 2, k~,) 

- ( f l~176 fk2 Go(k2, s) fk~ Go(k!,, s) (~o([k2 + k ~ - k l ,  s) 

x k 2 �9 (k2 - k ) k ~ ,  �9 ( k 2  - k ) k .  (k~_ - k ) ( k 2  + k ;  - k ) -  ( k ~  - k )  

x s vv(Ik2 - kl) ;~ vv(lk[ - kl) (22) 

Appendix B gives an outline of the manipulations that lead from Eqs. (16) 
and (17) to Eqs. (20) and (22). Note that the solutions to Eqs. (20) and 
(22) exactly satisfy the sum rule do(0, s ) =  1Is. These integral equations 
also satisfy first- and second-order perturbation theory, respectively, as 
they must. 

Equations (20) and (22) apply to any type of Gaussian disorder in any 
dimension greater than the upper critical dimension, in which case infrared 
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divergences are avoided for simple analytic forms'of t~0(k, s). If nonanalytic 
forms of t~o(k, s) are allowed, Eqs. (20) and (22) may also apply below the 
upper critical dimension and generate nontrivial scaling laws. 3 

When diffusion occurs, the effective diffusion coefficient is given by 
D = limk_o Go l(k, O)/k 2. To analyze the diffusive regime, simpler integral 
equations for the function 

f (h )  = Dox2h2Go(tch, O) (23) 

suffice, where h is now a dimensionless variable. The diffusion coefficient is 
given by 

D/Do = lim f - l ( h )  (24) 
11 ~ 0 

We solve the integral equations (20) and (22) in the s--* 0 limit by a 
basis set approach. Asymptotic analysis shows f ( h ) = D o / D + O ( h  2) as 
h ~ 0 and f ( h ) ~  1 + O(1/h 2) as h--* oo. Motivated by these constraints, we 
assume 

Ah)-- E a, /25) 
i= 1 1 + (h/b~) 2 

The last coefficient is fixed by a , =  1 and b,,= ~ .  The half-widths {bi} 
are distributed in 0<bi<hmax by the relation b~=hmaxi4 / (n-1)  4. The 
parameters {a~} are determined by insisting the integral equations (20) and 
(22) are satisfied at hi, where hi =b~/2 and hi= (b~+bg_~)/2. Equations 
(20) and (22) thus become nonlinear algebraic equations for the {a~}. In 
particular, the equation to be solved in the first-order case is 

1/(A ,,jaj) = (?/xO~) ajB~o. (26) 

and in the second-order case the equation is 

2 = 3 _ A ~ o a j + 4 _ ~ B ~ o a j  3.~__(2B~k+B3ok)a.iak 
A ~oaj xD o rcD~ 

),2 
2 4 (B4ij kl+ Bsq kl+ B6ij kt) ajakal (27) 

~. D O 

The summation convention is implied in these equations. The basis set 
integrals A and B for the specific case of disorder defined by Eq. (4) a r e  

3 See, for example, the recent self-consistent approach to the Kardar-Parisi-Zhang equation, 
a nonlinear diffusion equation similar to, but distinct from, Eq. (5), in ref. 6. See also the 

polymeric swelling case discussed in ref. 7. 
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listed in Appendix C. We find Eqs. (26) and (27) are efficiently solved by 
iteration on the {ai} parameters. Convergence is achieved for n = 16 and 
hmax = 20. Figure 1 depicts the effective diffusion coefficients predicted by 
Eqs. (26) and (27) for the specific model of disorder defined by Eq. (4) in 
d= 3 .  

5. R E N O R M A L I Z A T I O N  G R O U P  A P P R O A C H  

Renormalization group studies have been applied to the field-theoretic 
formulation of diffusion in random media. The review of Bouchaud and 
Georges details some of the scaling predictions that have been made for the 
mean square displacement, i.e., the exponent in the relation ( r 2 ( t ) )  ~ t2". ~3~ 
For the ease of disorder described by Eq. (4), these RG studies indicate the 
long-time behavior is diffusive in three dimensions, i.e., v =  1/2. Quan- 
titative calculation of the diffusion coefficient, however, seems not to have 
received much attention. Here we present a quantitative RG treatment of 
the diffusion coefficient for general gvv(lrL) in any dimension d. The discus- 
sion is limited, however, to case where Xvv(O) is finite. 

We use the standard momentum-space RG algorithm directly in the 
physical dimension. A general discussion of this approach as applied to the 
classical diffusion problem can be found in the review by Bouchaud and 

1.0 

0 . 8 -  
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c~ o 3 

~" 0.4 
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0.0 t ' ' 

0 10 20 30 
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Fig. 1. Diffusion coefficient as a function of disorder strength. Curve 1 is generated from the 
numerical solution to Eq. (20). Curve 2 is generated from the numerical solution to Eq. (22). 
Curve 3 is the RG result, Eq. (33), for d = 3 .  Curve 4 is the exact bound, Eq. (34). 
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George. 13~ More general discussions of the simple RG procedure we use 
can be found in, for example, ref. 8. 

The RG procedure will renormalize the parameters s, flo, Do, and 
~rv(k). We explicitly construct the recursion relation for the renormalized 
inverse temperature and renormalized diffusion coefficient, which we 
denote by 1/and D, respectively. We first introduce an artificial cutoff in the 
integrations in the action (9) such that Ik] <kc  and Ik~l <kc.  We then 
integrate out the modes kc/b <k <kc from the action (9) to first order in 
the parameter //2. The expansion parameter is forced to be //2 by first 
scaling the fields in the action (9) by D-'/2. These operations transform the 
action (9) to 

_ ~2 q- O(k4)} 

+ ~ (2g) ~ &(k~ + k2 + k3 + k4)k2. (k, + k2) 
I k2k3k4 

x k4' (k~ + k2) :~vv(lkl + k2[) ~b~(kl) ~ (k2 )  

X c~/~(k3) ~,(k4) + const (28) 

Here Ikl <kc/b and Ik~l <kc/b, but kc/b< Ik'l <kc.  As indicated, integrat- 
ing out the fields in the momentum shell leads to terms higher order in k 2 
in the part of the action quadratic in the fields. We retain in the recursion 
relations only the lowest order term associated with k 2. This term follows 
from Eq. (A.2), with the range of k' restricted to the momentum shell. Also 
generated by integrating out the fields in the momentum shell are terms 
independent of the remaining fields. Such terms do not affect the correla- 
tion function, and we ignore them. To keep the cutoff at kc, we rescale the 
momenta by k ' =  bk. So as to keep the formula for the diffusion coefficient 
as D=limk_oG-l(k,O)/k 2, with G(k,s) given by Eq. (10) and with the 
fields in the action not scaled by D -~/2, we rescale the fields by 
~b'= b-Ca+ 2~/2~ and ~ ' =  b-ca+ 21/z~. This step prevents trivial scaling from 
changing the coefficient of the k 2 term in the action. With these rescalings 
and removal of the primes, the action (9) becomes 

fsb2 [1 /~2 vv(k')] L[~,~]=ilk ~ ( - k ) ~ b ~ ( k ) J - f f +  --~-Ik. 2 k 2} 

(2~y ~ &(k~ + k2 + k3 + k4)k2 �9 (k~ + k2) 
+ ~ ik2k3k4 

x k4" (kt + k2) ~ vv(lkl + k2 l/b) @~(k 1) ~ ( k 2 )  

X ~b/~(k3) ~,o(k4) (29) 
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The ranges of integration are now Ikl < k~, Ik;I < kc, and k,./b < Ik'l < k~. 
It is clear that the action has retained the same form. After scaling the fields 
by D m, it is clear that the recursion relations for the parameters are 

~,2 = ~ l b  ~ 

D'= D [1-~-~d fw 2vv(k')] (30) 

2'vv(k) = ~ vv(k/b) 

where the integration over k' in the expression for D' is restricted to the 
shell kc/b < k'< k~. When the scaling b is identified as b =  exp(l) and is 
taken to be infinitesimally different from unity, the renormalization group 
equations become 

d In f12 
d 

dl 
din  D [32Sdk~j, vv(kce -t) 

dl (2r0 a d 

( 3 1 )  

where Sd is the surface area of a d-dimensional unit sphere. Integration of 
the flow equations leads to the renormalized coupling constants: 

(32) 

(D~) 1 Io 2-~, , .  - ,  In - (2~d d dl floe Sdkcxvv(kce ) 

In the limit that k c ---, oo, this equation yields 

D = Do exp[- f l~Zvv(0) /d]  (33) 

This result for the specific model of disorder defined by Eq. (4) in d =  3 is 
plotted in Fig. 1. 

6. D I S C U S S I O N  A N D  C O N C L U S I O N S  

It is clear that the self-consistent approaches are satisfactory for small 
[J~Zvv(O). By construction they must satisfy perturbation theory to the 
appropriate order. The first-order treatment, however, incorrectly predicts 
a negative curvature of the effective diffusion coefficient for weak disorder. 
The second-order treatment correctly predicts a positive curvature, and it 
agrees with the RG answer over a wide range in disorder strength. 
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The form of the effective diffusion coefficient deduced from the first-order 
self-consistent treatment is consistent with a recent path integral treatment 
of this problem. ~4~ In that reference, an integral equation is derived from a 
self-consistent, first-order perturbation theory for the propagator. This 
approximation is somewhat less direct than that of Eq. (20) due to a 
preaveraging of some of the high-order terms in the action. The results, 
however, are in qualitative agreement with those of Fig. 1. 

For sufficiently large disorder strengths the self-consistent approaches 
predict that the effective diffusion coefficient drops to zero with an 
apparontly infinite slope. This prediction cannot be correct. As shown in 
ref. 9, 4 there is an exact lower bound on the effective diffusion coefficient. 
The bound arises because the one-dimensional effective diffusion coefficient 
can be calculated exactly, and the value of the d-dimensional diffusion coef- 
ficient must be greater than the one-dimensional value. This bound can be 
expressed as 

Da_di m >/D,-dim = Do exp[-/~ozg vv(0)] (34) 

The one-loop order renormalization group approach, somewhat sur- 
prisingly, provides the exact answer for the effective diffusion coefficient in 
one dimension. Moreover, the RG result is valid to at least second order 
in any dimension, as is evident by a comparison of Eqs. (33) and (13). This 
result never crosses the bound. We speculate that this answer may be valid 
to rather high disorder strengths. It is of some interest to compare this 
result with exact numerical results, when they become available. 

In conclusion, the reduction in diffusion coefficient due to the disorder 
occurs as a result of local trapping of the diffusing particle in particularly 
deep wells in the potential field. The penetrant exhibits diffusive motion 
between these deep local wells. Self-consistent Gaussian reference systems 
seem to overemphasize the local behavior, leading to an incorrect pre- 
diction of trapping and a vanishing diffusion coefficient. In contrast, the 
renormalization group method offers a controlled approach to this 
problem, as it consistently applies perturbation theory only to the high-k 
modes, where it is valid. If the renormalization group result is indeed valid 
to high disorder strengths, it means that when the spatial rescaling has 
driven the momentum shell integration to a region where substantial mode- 
coupling effects occur,/~2 has been driven to such a small value that pertur- 
bation theory is still valid. Whether this is true is worthy of future 
investigation, by, for example, asymptotic expansion in 1/d or in 1/,6o. 

4 The unconventional units chosen in this paper introduce a factor of four in comparison with 
Eq. (34). 
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A P P E N D I X  A. P E R T U R B A T I O N  T H E O R Y  FOR THE 
D I F F U S I O N  C O E F F I C I E N T  

We describe iteration on Eq. (6) using the V = 0  form of the 
propagator (~ffee(k, s ) =  1/(s + Dok2). Specifically, we consider the integral 
equation for ~v(k)  = Dok2t~v(k, 0): 

g v(k ) = 1 - flo fk, ~v(k') I2(k - k ' )k ' .  ( k -  k')/k '2 (A.1) 

~,(k) = 1 + fl~ ~k, ~vv(k ')  k'-(k'+k 2 k) k./l~,~ ~(-k') + O(f14 ) 

= 1 + fl~ fk, ~vv(k ' ) /d+ O(k 2, fl~) (A.2) 

The k ~ 0 limit yields the first-order result 

Do/D = 1 + fl~gvv(O)/d + O(flg) 

Use is made of averaging over all orientations of k, 
(k '  .k)o~tk)= 0 and (k'-kk"-k>,o~k~=k2k ' .k" /d  in d dimensions. 

The second-order contribution in Eq. (13) arises from a term in the 
iteration involving the average 

( V(k 3 -- k4) V(k2 - k3) V(k, - k2) V(k - k , ) )  v (A.4) 

over the potential. Three types of terms result from this average: (a) 
k 2 = k 4 = 0 ,  (b) k l = k 3  and k4=0,  and (c) k 2 - k 3 = k l  and k4=0.  Term 
(a) leads to fl4X2vv(O)/d2. Terms (b) and (c) sum after manipulation to 
-fl4X2vv(O)/2d2. The final result is 

Do/D = 1 + fl2Xvv(O)/d + flgg vv(O)2/2d 2 + O(fl 6) (A.5) 

and inversion gives Eq. (13). 

(A.3) 

( >,~tk), e.g., 

We expand the right-hand side (rhs) by iteration, replacing ~v(k ' )  by the 
rhs. We then take the average over the Gaussian potential V and set 
g(k) = 1. Only terms even in powers of fl0 survive this averaging. The diffu- 
sion coefficient is given by D o / D = l i m k ~ o ~ ( k ) ,  as in Eq. (24). To first 
order, for example, 
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APPENDIX B. THE CONNECTED AVERAGES IN THE 
SELF-CONSISTENT APPROACH 

We consider here the implementation of Eqs. (16) and (17). We first 
note that 

<Ae~L>oc = <A>oc+ <A dL>oc+ 1 2 I<A(AL) >oc+ "'" (B.1) 

gives an asymptotic expansion of the average of A with weighting func- 
tional exp(L) in the reference system with weighting functional exp(Lo) if 
AL = L-Lo.  Thus Eqs. (16) and (17) are the first-order and the first- plus 
second-order corrections to the correlation function if L is the action of 
Eq. (9). As discussed in the text, we choose the reference action Lo of 
Eq. (19) to be diagonal and replica-symmetric. We denote the diagonal 
element by (~o(k, s). We split the action L into a part quadratic in the fields 
L2 and the part quartic in the fields L4. Since we want a self-consistent 
equation for the propagator, the quantity we will be averaging is 
A =6t(k)~bl(-k)/g-2. In this case, Eq. (16) becomes 

(A(L2 + L4 - Lo) )oc = 0 (B.2) 

and Eq. (17) becomes 

( h(t2 + t4 - -  to) )oc + �89 ( h(t~ + L~ + t 2o + 2L2L4 

- 2L2Lo - 2L4 Lo) )o,. = 0 (B.3) 

We can evaluate the connected replica averages appearing in these for- 
mulas. After taking the N--* 0 limit, we find 

i( ALo)oc = Go(k, s) 

i( AL2 )oc-~ Go(k, s)(s + Do kz) 

i(AL,)oc = (floDo) z Go(k, s) [ Go(k2, s) 02(k, k2) 
~ k  2 

i(AL~)oc = - 2(~o(k, s) 

i(AL~)oc = - 2(~o3(k, s)(s + Dok2) 2 

i( ALoL2 )o,-= - 21~oZ( k, s)(s + Do k2) 

i(ALoL4)o~ = - 3(floDo) 2 (~(k, s) J'k2 Go(k2, s) ~(k, k2) 

i( AL2L, )o~ = -2(floDo) 2 G3(k, s)(s + Dok 2) Ik 2 Go(k2, s) a(k, k2) 

- ( f l o D o )  2 r s) ~kf2 d~(k2' s)(s + Ook~) ~ ( k ,  k2) 
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i( AL])o,.= - 2(floDo)4 G3(k, s) [Ik2 Go(kz, s) (t(k, k2)] 2 

-- 2(floDo) 4 Go2(k, s) J'k2 G~ s) 

x~(k,  k2) f " ' Go(k2, s) a(kz, k~) 
Jk 

s/;,,  oI 2, s) 
x Co(Ikz+ k~-  kl, s) 

x k 2 - ( k 2  - k ) k . ~ -  (k2  - k ) k .  (k~  - k ) ( k 2  + k-~ - k ) - ( k ~ z  - k )  

x ;~ vv(lk2 - kl) ~ vv(Ik~ - kl) (B.4) 

Collection and rearrangement of these terms gives the self-consistent equa- 
tions (20) and (22). 

Making the identification Lo=L., corresponds to a perturbation 
theory with the V = 0  form of the propagator Grree(k,s)=l/(s+Dok2). 
Using Eq. (B.1) with the terms listed in Eq. (B.4) leads directly to the 
perturbation theory result of Eq. (13) for the diffusion coefficient. The last 
three terms, proportional to (floDo) 4, in Eq. (B.4) give the terms (a), (b), 
and (c), respectively, discussed in Appendix A. We note that the last term, 
term (c), acquires an incorrect prefactor of 4 in the limit N =  I. The pre- 
factor of 2 resulting from the N ~ 0  limit agrees with the perturbation 
theory term (c) from Appendix A and is correct. 

APPENDIX C. THE BASIS SET INTEGRALS 

For the specific case of disorder defined by Eq. (4), the basis set 
integrals are given by 

1 

A ,,j = 1 + h~/b~ 

~(h,, bj) 
Bt/ j -  (2rQ 3 

B uk 
B2ijk- I 2 :z + h i/bj 

Io  dk2 fi(hi, k2) 
"~ "~ 2 2 Baud= (2n) 3 (1 +k~/b})(1 +k2/b k) 

B l i k B l i l  
B 4ijkl  ~ 

l + h 

822/76/3-4-12 
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f :  dk2 ~(hi, k2) 0 ( k 2 ,  bt) 
BsUk'= (2n) 6 (1 +k2/b2)(1 +k2/b 2) 

l f :  f :  f l  f l  f"  a ~ ,  = (-T~n ) 5 dk  ~ ak'~ ax  ay a~ 
- -1  - - I  - - n  

2 2 2 i 2 x b i bj bkk2k2(k 2 + kk2x)( - k  2 + kk'2 y) 

x z(k'2 2 - kk2x - kk'2 y + k2k'2z) 

x [(b  2 + k 2 + k 2 + 2kk2x)(b 2 + k~ 2) 

x (b~ + k 2 + k~ 2 + 2k2k'2z ) k2(1 + k2 2) 

x (k 2 + k 2 + 2kk2x)(k 2 + k~ 2 - 2kk'2 y) 

x ( l  + k 2 +  ,2 , 2 --l k2 - 2kkz y)(k2 + k~ 2 + 2k2k'2 z)] 

7, = [ ( 1  - - X 2 ) ( I  - -  y 2 ) ]  1/2 COS(~) + x y  

The function a(k, k ' )  is given by 

k 2 ~ ( k , k ' ) = - ~ - - ~ - ~  ( k - k ' 2 ) 2 1 n  - 

+ [ ( k 2 - - k ' 2 )  2 -  1] In 

( k - k ' )  2 

( k + k ' )  2 

( k + k ' ) 2 +  11} 
(k - k ' )  2 + 

The function O(k, k ' )  is given by 

6(k, b) = I :  dk2 
~i( k, k 2...........~) 

1 + k2 /b  2 

brc2 b2~2 ( _ b4 _ 2b2k 2 + k 4) ~3 

= - -  ~ - ~  -I- -~--~-- q 8k  3 

(1 + b 4 + 2b2k 2 - k4)n 2 arctan(k)  
+ 

4k 3 

(b 2 + k2) 2 n 2 arctan[2bk/(-b 2 + k2)] 
+ 

4k 3 

"~ ( 1 - -  b 4 - 262k 2 - k4)n 2 arctan[2bk/( 1 - b 2 + k2)] 

4k 3 

- ( 1  + b 2 + k 2 ) ( 1 - 2 b 2 + b 4 - k 4 ) r c  2 

arctan[  k( 1 + b 2 + k2)/( 1 - b 2 + k2)] 
• 

4k3( 1 - b 2 + k 2) 

(b 2 + k2) 2 lr 3 signum( - b  2 + k 2) 

8k 3 

(C.I)  

(C.2) 

(c.3) 
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The one-dimensional  integrals in Eq. (C.1) are done to a specified 
tolerance by adapt ive  G a u s s - L e g e n d r e  integrat ion,  and  the five-dimen- 
sional integral  is done by ten th-order  G a u s s - L e g e n d r e  integration/1~ The 
identi ty 

~ :  dx  f ( x ) =  ;~ I f ( x )  + f ( 1 / x ) / x  2] (C.4) 

is used in performing the wave vector  integrations.  
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